Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using deciduous trees as bioindicators of trace element deposition in a small urban watershed, Indianapolis, IN, USA.

Identifieur interne : 000033 ( Main/Exploration ); précédent : 000032; suivant : 000034

Using deciduous trees as bioindicators of trace element deposition in a small urban watershed, Indianapolis, IN, USA.

Auteurs : Katerina Mazari ; Gabriel M. Filippelli

Source :

RBID : pubmed:33016370

Descripteurs français

English descriptors

Abstract

Annual and multiyear records of trace element deposition are difficult to develop using monitoring systems but have proven feasible using plant material in several settings. Here, we used material from several tree species (Populus deltoides W. Bartram ex Marshall, Platanus occidentalis L., and Ginkgo biloba L.) to detect atmospheric deposition of trace elements (Cd, Cu, Pb, and Zn) in six localities along a transect from near-urban to far-urban in southeastern Indianapolis, IN, and one control site. We captured soil (legacy footprint), bark (multiannual record), and leaves (seasonal record) across a broad swath of the urban landscape and using a multi-metal approach. Tree bark, leaf, and proximal soil samples were collected and analyzed for their trace element content. The highest trace metal concentrations occurred at the near-urban sites, with particularly high Cu and Pb values. The highest Zn values were found at one of the far-urban sites, which is located near a large brownfield that was a former coal and coke storage and processing facility. No correlation was found between soil trace element composition and that of bark and leaves, perhaps indicating a disconnect between legacy inputs recorded in soils and current inputs recorded in the biological materials. Overall, the tree species analyzed served well as trace element bioindicators, although less so for G. biloba, and thus this approach is promising for further understanding the role that airborne pollution and deposition play in urban watersheds.

DOI: 10.1002/jeq2.20009
PubMed: 33016370


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using deciduous trees as bioindicators of trace element deposition in a small urban watershed, Indianapolis, IN, USA.</title>
<author>
<name sortKey="Mazari, Katerina" sort="Mazari, Katerina" uniqKey="Mazari K" first="Katerina" last="Mazari">Katerina Mazari</name>
<affiliation>
<nlm:affiliation>Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN, 46202-5132.</nlm:affiliation>
<wicri:noCountry code="subField">46202-5132</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Environmental Resilient Institute, 717 E 8th St., Bloomington, IN, 47408.</nlm:affiliation>
<wicri:noCountry code="subField">47408</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Filippelli, Gabriel M" sort="Filippelli, Gabriel M" uniqKey="Filippelli G" first="Gabriel M" last="Filippelli">Gabriel M. Filippelli</name>
<affiliation>
<nlm:affiliation>Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN, 46202-5132.</nlm:affiliation>
<wicri:noCountry code="subField">46202-5132</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Environmental Resilient Institute, 717 E 8th St., Bloomington, IN, 47408.</nlm:affiliation>
<wicri:noCountry code="subField">47408</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33016370</idno>
<idno type="pmid">33016370</idno>
<idno type="doi">10.1002/jeq2.20009</idno>
<idno type="wicri:Area/Main/Corpus">000071</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000071</idno>
<idno type="wicri:Area/Main/Curation">000071</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000071</idno>
<idno type="wicri:Area/Main/Exploration">000071</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Using deciduous trees as bioindicators of trace element deposition in a small urban watershed, Indianapolis, IN, USA.</title>
<author>
<name sortKey="Mazari, Katerina" sort="Mazari, Katerina" uniqKey="Mazari K" first="Katerina" last="Mazari">Katerina Mazari</name>
<affiliation>
<nlm:affiliation>Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN, 46202-5132.</nlm:affiliation>
<wicri:noCountry code="subField">46202-5132</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Environmental Resilient Institute, 717 E 8th St., Bloomington, IN, 47408.</nlm:affiliation>
<wicri:noCountry code="subField">47408</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Filippelli, Gabriel M" sort="Filippelli, Gabriel M" uniqKey="Filippelli G" first="Gabriel M" last="Filippelli">Gabriel M. Filippelli</name>
<affiliation>
<nlm:affiliation>Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN, 46202-5132.</nlm:affiliation>
<wicri:noCountry code="subField">46202-5132</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Environmental Resilient Institute, 717 E 8th St., Bloomington, IN, 47408.</nlm:affiliation>
<wicri:noCountry code="subField">47408</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of environmental quality</title>
<idno type="eISSN">1537-2537</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Environmental Biomarkers (MeSH)</term>
<term>Environmental Monitoring (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Trace Elements (analysis)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Biomarqueurs environnementaux (MeSH)</term>
<term>Oligoéléments (analyse)</term>
<term>Sol (MeSH)</term>
<term>Surveillance de l'environnement (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Trace Elements</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Environmental Biomarkers</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Oligoéléments</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Environmental Monitoring</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Biomarqueurs environnementaux</term>
<term>Sol</term>
<term>Surveillance de l'environnement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Annual and multiyear records of trace element deposition are difficult to develop using monitoring systems but have proven feasible using plant material in several settings. Here, we used material from several tree species (Populus deltoides W. Bartram ex Marshall, Platanus occidentalis L., and Ginkgo biloba L.) to detect atmospheric deposition of trace elements (Cd, Cu, Pb, and Zn) in six localities along a transect from near-urban to far-urban in southeastern Indianapolis, IN, and one control site. We captured soil (legacy footprint), bark (multiannual record), and leaves (seasonal record) across a broad swath of the urban landscape and using a multi-metal approach. Tree bark, leaf, and proximal soil samples were collected and analyzed for their trace element content. The highest trace metal concentrations occurred at the near-urban sites, with particularly high Cu and Pb values. The highest Zn values were found at one of the far-urban sites, which is located near a large brownfield that was a former coal and coke storage and processing facility. No correlation was found between soil trace element composition and that of bark and leaves, perhaps indicating a disconnect between legacy inputs recorded in soils and current inputs recorded in the biological materials. Overall, the tree species analyzed served well as trace element bioindicators, although less so for G. biloba, and thus this approach is promising for further understanding the role that airborne pollution and deposition play in urban watersheds.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">33016370</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-2537</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>49</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of environmental quality</Title>
<ISOAbbreviation>J Environ Qual</ISOAbbreviation>
</Journal>
<ArticleTitle>Using deciduous trees as bioindicators of trace element deposition in a small urban watershed, Indianapolis, IN, USA.</ArticleTitle>
<Pagination>
<MedlinePgn>163-171</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jeq2.20009</ELocationID>
<Abstract>
<AbstractText>Annual and multiyear records of trace element deposition are difficult to develop using monitoring systems but have proven feasible using plant material in several settings. Here, we used material from several tree species (Populus deltoides W. Bartram ex Marshall, Platanus occidentalis L., and Ginkgo biloba L.) to detect atmospheric deposition of trace elements (Cd, Cu, Pb, and Zn) in six localities along a transect from near-urban to far-urban in southeastern Indianapolis, IN, and one control site. We captured soil (legacy footprint), bark (multiannual record), and leaves (seasonal record) across a broad swath of the urban landscape and using a multi-metal approach. Tree bark, leaf, and proximal soil samples were collected and analyzed for their trace element content. The highest trace metal concentrations occurred at the near-urban sites, with particularly high Cu and Pb values. The highest Zn values were found at one of the far-urban sites, which is located near a large brownfield that was a former coal and coke storage and processing facility. No correlation was found between soil trace element composition and that of bark and leaves, perhaps indicating a disconnect between legacy inputs recorded in soils and current inputs recorded in the biological materials. Overall, the tree species analyzed served well as trace element bioindicators, although less so for G. biloba, and thus this approach is promising for further understanding the role that airborne pollution and deposition play in urban watersheds.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Journal of Environmental Quality © 2020 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mazari</LastName>
<ForeName>Katerina</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-9746-5258</Identifier>
<AffiliationInfo>
<Affiliation>Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN, 46202-5132.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Environmental Resilient Institute, 717 E 8th St., Bloomington, IN, 47408.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Filippelli</LastName>
<ForeName>Gabriel M</ForeName>
<Initials>GM</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-3434-5982</Identifier>
<AffiliationInfo>
<Affiliation>Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN, 46202-5132.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Environmental Resilient Institute, 717 E 8th St., Bloomington, IN, 47408.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Indiana University's Prepared for Environmental Change Grand Challenge initiative</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Environ Qual</MedlineTA>
<NlmUniqueID>0330666</NlmUniqueID>
<ISSNLinking>0047-2425</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000074062">Environmental Biomarkers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014131">Trace Elements</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000074062" MajorTopicYN="N">Environmental Biomarkers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014131" MajorTopicYN="N">Trace Elements</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>8</Hour>
<Minute>42</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33016370</ArticleId>
<ArticleId IdType="doi">10.1002/jeq2.20009</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Adriano, D. C. (1986). Trace elements in terrestrial environments (1st ed.). New York: Springer.</Citation>
</Reference>
<Reference>
<Citation>Adriano, D. C. (2001). Trace elements in terrestrial environments, biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York: Springer. https://doi.org/10.1007/978-0-387-21510-5</Citation>
</Reference>
<Reference>
<Citation>Al-Alawi, M. M., & Mandiwana, K. L. (2007). The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere. Journal of Hazardous Materials, 148, 43-46. https://doi.org/10.1016/j.jhazmat.2007.02.001</Citation>
</Reference>
<Reference>
<Citation>Alves, E. S., Moura, B. B., & Domingos, M. (2008). Structural analysis of Tillandsia usneoides L. exposed to air pollutants on São Paulo City- Brazil. Water, Air, and Soil Pollution, 189, 61-68. https://doi.org/10.1007/s11270-007-9555-1</Citation>
</Reference>
<Reference>
<Citation>Aničić, M., Spasić, T., Tomašević, M., Rajšić, S., & Tasić, M. (2011). Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecological Indicators, 11, 824-830. https://doi.org/10.1016/j.ecolind.2010.10.009</Citation>
</Reference>
<Reference>
<Citation>Balasooriya, B. L. W.K., Samson, R., Mbikwa, F., Vitharana, U. W.A., Boeckx, P., & Van Meirvenne, M. (2009). Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristic. Environmental and Experimental Botany, 65, 386-394. https://doi.org/10.1016/j.envexpbot.2008.11.009</Citation>
</Reference>
<Reference>
<Citation>Barber, J. L., Thomas, G. O., Kerstiens, G., & Jones, K. C. (2004). Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environmental Pollution, 128, 99-138. https://doi.org/10.1016/j.envpol.2003.08.024</Citation>
</Reference>
<Reference>
<Citation>Bargagli, R. (1998). Trace elements in terrestrial plants: An ecophysiological approach to biomonitoring and biorecovery. Berlin, Heidelberg, New York: Springer.</Citation>
</Reference>
<Reference>
<Citation>Baycu, G., Tolunay, D., Özden, H., & Günebakan, S. (2006). Ecophysiological and seasonal variations in Cd, Pb, Zn and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environmental Pollution, 143, 545-554. https://doi.org/10.1016/j.envpol.2005.10.050</Citation>
</Reference>
<Reference>
<Citation>Bellis, D., Cox, A. J., Staton, I., McLeod, C. W., & Statke, K. (2001). Mapping airborne lead contamination near a metal smelter in Derbyshire UK: Spatial variation of Pb concentration and ‘enrichment factor’ for tree bark. Journal of Environmental Monitoring, 3, 512-514. https://doi.org/10.1039/b106835k</Citation>
</Reference>
<Reference>
<Citation>Caselles, J., Colliga, C., & Zornoza, P. (2002). Evaluation of trace element pollution from vehicle emissions in petunia plants. Water Air Soil Pollution, 136, 1-9. https://doi.org/10.1023/A:1015229714374</Citation>
</Reference>
<Reference>
<Citation>Chambers, L. G., Chin, Y-P., Filippelli, G. M., Gardner, C., Herndon, E. M., et al. (2016). Developing the scientific framework for urban geochemistry. Applied Geochemistry, 67, 1-20. https://doi.org/10.1016/j.apgeochem.2016.01.005</Citation>
</Reference>
<Reference>
<Citation>Councell, T. B., Duckenfield, K. U., Landa, E. R., & Callender, E. (2004). Tire-wear particles as a source of zinc to the environment. Environmental Science & Technology, 38, 4206-4214. https://doi.org/10.1021/es034631f</Citation>
</Reference>
<Reference>
<Citation>Dollar, N. L., Souch, C., Filippelli, G. M., & Mastalerz, M. (2001). Chemical fractionation of metals in wetland sediments: Indiana Dunes National Lakeshore. Environmental Science & Technology, 35, 3608-3618. https://doi.org/10.1021/es0105764</Citation>
</Reference>
<Reference>
<Citation>Doğanlar, Z. B., & Atmaca, M. (2011). Influence of airborne pollution on Cd, Zn, Pb, Cu and Al accumulation and physiological parameters of plant leaves in Antakya (Turkey). Water Air Soil Pollution, 214, 509-523. https://doi.org/10.1007/s11270-010-0442-9</Citation>
</Reference>
<Reference>
<Citation>El-Hasan, T., Al-Omari, H., Jiries, A., & Al-Nasir, F. (2002). Cypress tree (Cupressus sempervirens L.) bark as indicator for heavy metal pollution in the atmosphere of Amman City, Jordan. Environment International, 28, 513-519. https://doi.org/10.1016/s0160-4120(02)00079-x</Citation>
</Reference>
<Reference>
<Citation>Esposito, F., Memoli, V., & Di Natale, G. (2019). Quercus ilex L. leaves as filters of air Cd, Cr, Cu, Ni and Pb. Chemosphere, 218, 340-346. https://doi.org/10.1016/j.chemosphere.2018.11.133</Citation>
</Reference>
<Reference>
<Citation>Fernandéz Espinoza, A. J., & Rossini Oliva, S. (2006). The composition and relationships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L. and Lantana camara L. Chemosphere, 62, 1665-1672. https://doi.org/10.1016/j.chemosphere.2005.06.038</Citation>
</Reference>
<Reference>
<Citation>Filippelli, G. M., & Laidlaw, M. (2010). The elephant in the playground: Confronting lead- contaminated soils as an important source of lead burdens to urban population. Perspectives in Biology and Medicine, 53, 31-45. https://doi.org/10.1353/pbm.0.0136</Citation>
</Reference>
<Reference>
<Citation>Filippelli, G. M., Laidlaw, M., Latimer, J. C., & Raftis, R. (2005). Urban lead poisoning and medical geology: An unfinished story. GSA Today, 15, 4-11.</Citation>
</Reference>
<Reference>
<Citation>Filippelli, G. M., Risch, M., Laidlaw, M. A.S., Nichols, D. E., & Crewe, J. (2015). Geochemical legacies and the future health of cities: A tale of two neurotoxins in urban soils. Elementa, 3. https://doi.org/10.12952/journal.elementa.000059</Citation>
</Reference>
<Reference>
<Citation>Galuszka, A. (2005). The chemistry of soil, rocks, and plant bioindicators in three ecosystems of the Holy Cross Mountains, Poland. Environmental Monitoring and Assessment, 110, 55-70. https://doi.org/10.1007/s10661-005-6290-1</Citation>
</Reference>
<Reference>
<Citation>Grigoratos, T., & Martini, G. (2015). Brake wear particle emissions: A review. Environmental Science and Pollution Research, 22, 2491-2504. https://doi.org/10.1007/s11356-014-3696-8</Citation>
</Reference>
<Reference>
<Citation>Hatcher, C. L., & Filippelli, G. M. (2011). Mercury cycling in an urbanized watershed: The influence of wind and regional subwatershed geometry in central Indiana, USA. Water Air Soil Pollution, 219, 251-261. https://doi.org/10.1007/s11270-010-0703-7</Citation>
</Reference>
<Reference>
<Citation>Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper and nickel in agriculture soils of the United States of America. Journal of Environmental Quality, 22, 335-348. https://doi.org/10.2134/jeq1993.00472425002200020015x</Citation>
</Reference>
<Reference>
<Citation>Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton, FL: CRC Press.</Citation>
</Reference>
<Reference>
<Citation>Kardel, F., Wuyts, K., De Wael, K., & Samson, R. (2018). Biomonitoring of atmospheric particulate pollution via chemical composition and magnetic properties of roadside tree leaves. Environmental Science and Pollution Research, 25, 25994-26004. https://doi.org/10.1007/s11356-018-2592-z</Citation>
</Reference>
<Reference>
<Citation>Kharkan, J., Hossein Sayadi, M., & Resa Rezaei, M. (2019). Investigation of heavy metals accumulation in the soil and pine trees. Environmental Health Engineering and Management, 6, 17-25.</Citation>
</Reference>
<Reference>
<Citation>Laidlaw, M. A., & Filippelli, G. M. (2008). Resuspension of urban soils as a persistent source of lead poisoning in children: A review and new directions. Applied Geochemistry, 23, 2021-2039. https://doi.org/10.1016/j.apgeochem.2008.05.009</Citation>
</Reference>
<Reference>
<Citation>Laidlaw, M. A. S., Filippelli, G. M., Brown, S., Paz-Ferreiro, J., Reichman, S., et al. (2017). Case studies and evidence-based approaches to addressing urban soil lead contamination. Applied Geochemistry, 83, 14-30. https://doi.org/10.1016/j.apgeochem.2017.02.015</Citation>
</Reference>
<Reference>
<Citation>Laidlaw, M. A. S., Filippelli, G. M., Sadler, R. C., Gonzales, C. R., Ball, A. S., & Mielke, H. W. (2016). Children's blood lead seasonality in Flint, Michigan (USA), and soil-sourced lead hazard risks. International Journal of Environmental Research and Public Health, 13(4). https://doi.org/10.3390/ijerph13040358</Citation>
</Reference>
<Reference>
<Citation>Laidlaw, M. A. S., Mielke, H. W., Filippelli, G. M., Johnson, D. L., & Gonzales, C. R. (2005). Seasonality and children's blood lead levels: Developing a predictive model using climatic variables and blood lead data from Indianapolis, Indiana, Syracuse, New York and New Orleans, Louisiana (USA). Environmental Health Perspectives, 113, 793-800. https://doi.org/10.1289/ehp.7759</Citation>
</Reference>
<Reference>
<Citation>Laidlaw, M. A. S., Zahran, S., Mielke, H. W., Taylor, M. P., & Filippelli, M. G. (2012). Re-suspension of lead contaminated urban soil as a dominant source of atmospheric lead in Birmingham, Chicago, Detroit and Pittsburg, USA. Atmospheric Environment, 49, 302-310. https://doi.org/10.1016/j.atmosenv.2011.11.030</Citation>
</Reference>
<Reference>
<Citation>McKeague, J. A., & Wolynetz, M. S. (1980). Background levels of minor elements in some Canadian soils. Geoderma, 24, 299-307. https://doi.org/10.1016/0016-7061(80)90057-9</Citation>
</Reference>
<Reference>
<Citation>Missouri Botanical Garden. (2018). Plant finder. Missouri Botanical Garden. Retrieved from http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode</Citation>
</Reference>
<Reference>
<Citation>Morrison, D., Lin, Q., Wiehe, S., Liu, G., Rosenman, M., et al. (2013). Spatial relationships between lead sources and children's blood lead levels in the urban center of Indianapolis (USA). Environmental Geochemistry and Health, 35, 171-183. https://doi.org/10.1007/s10653-012-9474-y</Citation>
</Reference>
<Reference>
<Citation>Pandit, C.M., Filippelli, G.M., & Li, L. 2010. Estimation of heavy metal contamination in soil using reflectance spectroscopy and partial least-squares regression. International Journal of Remote Sensing. 31, 4111-4123. https://doi.org/10.1080/01431160903229200</Citation>
</Reference>
<Reference>
<Citation>Patrick, G. J., & Farmer, J. G. (2007). A lead isotopic assessment of tree bark as biomonitor of contemporary atmospheric lead. Science of the Total Environment, 388, 343-356. https://doi.org/10.1016/j.scitotenv.2007.07.047</Citation>
</Reference>
<Reference>
<Citation>Perkins, S., Filippelli, G. M., & Souch, C. (2000). Airborne trace metal contamination of wetland sediments at Indiana Dunes National Lakeshore. Water Air Soil Pollution, 12, 231-260. https://doi.org/10.1023/A:1005254916966</Citation>
</Reference>
<Reference>
<Citation>R Core Team (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/</Citation>
</Reference>
<Reference>
<Citation>Rodriguez, J. H., Wannaz, E. D., Salazar, M. J., Pignata, M. L., Fangmeier, A., & Franzaring, J. (2012). Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the three foliage of Eucalyptus rostrate, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmospheric Environment, 55, 35-42. https://doi.org/10.1016/j.atmosenv.2012.03.026</Citation>
</Reference>
<Reference>
<Citation>Rossini Oliva, S., & Mingorance, M. D. (2006). Assessment of airborne heavy metal pollution by aboveground plant parts. Chemosphere, 65, 177-182. https://doi.org/10.1016/j.chemosphere.2006.03.003</Citation>
</Reference>
<Reference>
<Citation>Samecka-Cymerman, A., Stankiewitcz, A., Kolon, K., & Kempers, A. J. (2009). Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.). Environmental Pollution, 157, 2061-2065. https://doi.org/10.1016/j.envpol.2009.02.021</Citation>
</Reference>
<Reference>
<Citation>Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P., & Tsigaridas, K. (2011). Trees as bioindicators of heavy metal pollution in three European cities. Environmental Pollution, 159, 3560-3570. https://doi.org/10.1016/j.envpol.2011.08.008</Citation>
</Reference>
<Reference>
<Citation>Schulz, H., Popp, P., Huhn, G., Stärk, H-J., & Schüürmann, G. (1999). Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations. Science of the Total Environment, 232, 49-58. https://doi.org/10.1016/s0048-9697(99)00109-6</Citation>
</Reference>
<Reference>
<Citation>Serbula, S. M., Miljkovich, D. Dj., Kovacevic, R. M., & Ilic, A. A. (2012). Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicology and Environmental Safety, 76, 209-214. https://doi.org/10.1016/j.ecoenv.2011.10.009</Citation>
</Reference>
<Reference>
<Citation>Soudek, P., Kinderman, P., Maršík, P., Petrová, Š., & Vanĕk, T. (2012). Biomonitoring of air pollution in Prague using tree leaves. Journal of Food, Agriculture and Environment, 10, 810-817.</Citation>
</Reference>
<Reference>
<Citation>Todorović, D., Popović, D., Ajtić, J., & Nikolić, J. (2013). Leaves of higher plants as biomonitors of radionuclides (137Cs, 40K, 210Pb and 7Be) in urban air. Environmental Science and Pollution Research, 20, 525-532. https://doi.org/10.1007/s11356-012-0940-y</Citation>
</Reference>
<Reference>
<Citation>Tomašević, M., Aničić, M., Jovanović, L. j., Perić-Grujić, A., & Ristić, M. (2011). Deciduous tree leaves in trace elements biomonitoring: A contributor to methodology. Ecological Indicators, 11, 1689-1695. https://doi.org/10.1016/j.ecolind.2011.04.017</Citation>
</Reference>
<Reference>
<Citation>Tomašević, M., Vukmirović, Z., Rajšić, S., Tasić, M., & Stevanović, B. (2008). Contribution to biomonitoring of some trace metals by deciduous tree leaves in urban areas. Environmental Monitoring and Assessment, 137, 393-401. https://doi.org/10.1007/s10661-007-9775-2</Citation>
</Reference>
<Reference>
<Citation>Ugolini, F., Tognetti, R., Raschi, A., & Bacci, L. (2013). Quercus ilex L. as bioaccumulator for heavy metals in urban areas: Effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban Forestry and Urban Greening, 12, 576-584. https://doi.org/10.1016/j.ufug.2013.05.007</Citation>
</Reference>
<Reference>
<Citation>Zahran, S., Laidlaw, M. A. S., McElmurry, S., Filippelli, G., & Taylor, M. (2013). Linking source and effect: Re-suspended soil lead, air lead, and children's blood lead levels in Detroit, Michigan. Environmental Science & Technology, 47, 2839-2845. https://doi.org/10.1021/es303854c</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Filippelli, Gabriel M" sort="Filippelli, Gabriel M" uniqKey="Filippelli G" first="Gabriel M" last="Filippelli">Gabriel M. Filippelli</name>
<name sortKey="Mazari, Katerina" sort="Mazari, Katerina" uniqKey="Mazari K" first="Katerina" last="Mazari">Katerina Mazari</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000033 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000033 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33016370
   |texte=   Using deciduous trees as bioindicators of trace element deposition in a small urban watershed, Indianapolis, IN, USA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33016370" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020